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Abstract. The problem of determining a maximum matching or whether there exists a perfect
matching, is very common in a large variety of applications and as been extensively studied in graph
theory. In this paper we start to introduce a characterisation of a family of graphs for which its
stability number is determined by convex quadratic programming. The main results connected with
the recognition of this family of graphs are also introduced. It follows a necessary and sufficient
condition which characterise a graph with a perfect matching and an algorithmic strategy, based on
the determination of the stability number of line graphs, by convex quadratic programming, applied
to the determination of a perfect matching. A numerical example for the recognition of graphs with a
perfect matching is described. Finally, the above algorithmic strategy is extended to the determination
of a maximum matching of an arbitrary graph and some related results are presented.
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1. Introduction

In this paper we deal with undirected simple graphs (that is, graphs where there is
nor loops neither multiple edges), G, for which V (G) denotes the set of nodes and
E(G) the set of edges. An element of E(G), whose ends are the nodes i and j , is
denoted by {i, j}. It is also assumed that G is of order n � 1 and size m � 0 (i.e.,
|V (G)| = n � 1 and |E(G)| = m � 0). The matrix AG denotes the adjacency
matrix of the graph G, that is, AG = (aij )n×n is such that

aij =
{

1 if {i, j} ∈ E(G)
0 otherwise.

Given U ⊂ V (G), we denote by G − U the subgraph induced by the set of nodes
V (G)\U and by AG−U its adjacency matrix. Given a node i ∈ V (G), NG(i) is the
neighbourhood of the node i, that is, NG(i) = {j ∈ V (G) : {i, j} ∈ E(G)}.

A subset of nodes S ⊆ V (G) is stable if no two nodes in S are linked by an
edge. A stable set S is called a maximum stable set if there is no other stable set
with greater number of nodes. The number of nodes in a maximum stable set of
a graph G is called the stability number (or independence number) of G and it is
denoted (as usually) α(G).

Given a subset of nodes of a graph G, S ⊆ V (G), the vector x ∈ R
V with

xv = 1 if v ∈ S and xv = 0 if v /∈ S is called the characteristic vector of S.
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Denoting by λmin(AG) the minimum eigenvalue of the adjacency matrix of a
graph G, AG, as it is well known, see (Cvetkovich, Doob and Sachs, 1979), if
G has at least one edge, then λmin(AG) � −1 and, λmin(AG) = −1 if and only
if every connected component of G is a complete subgraph. If E(G) = ∅ then
λmin(AG) = 0.

As it is proved in Luz and Cardoso (1998), assuming that G has at least one
edge, φ∗2,1(G) is the best upper bound for α(G), among the optimal values of the
family of convex quadratic programming problems

φ∗a,b(G) = max{aêT x − bxT ( 1

−λmin(AG)AG + In)x : x � 0},

where ê is the all-ones vector of R
n, In is the identity matrix of order n, and a and

b are real numbers such that b � 0 and a − b � 1. On the other hand, with the
same assumption, according to Luz (1995 ), α(G) = φ∗2,1(G) if and only if for a
maximum stable set S of G (and then for all),

−λmin(AG) � min{|NG(i) ∩ S| : i �∈ S}. (1.1)

Now, defining

(P
φ∗
G ) φ

∗(G) =
{

φ∗2,1(G) if E(G) �= ∅
max{2êT x− ‖ x ‖2, x � 0} = n otherwise,

as a direct consequence of the above results, we can conclude that for any graph,G,
α(G) � φ∗(G) and α(G) = φ∗(G) if and only if the inequality (1.1) is fulfilled.
Such upper bound, for α(G), also can be obtained from Motzkin–Straus result
(Motzkin and Straus, 1965), which may be looked up in Gibbons et al (1997), from
which we get

(min{xT (AG + In)x : x � 0, êT x = 1})−1 = α(G). (1.2)

In fact, assuming E(G) �= ∅ and then λmin(AG) � −1, it follows that

xT (
1

−λmin(AG)
AG + In)x � xT (AG + In)x ∀x � 0 (1.3)

and hence, since by theorem 5 of Bomze (1998)

φ∗(G) = max{2êT x − xT ( 1

−λmin(AG)
AG + In)x : x � 0}

= (min{xT ( 1

−λmin(AG)AG + In)x : x � 0, êT x = 1})−1,

applying (1.2) and (1.3) we obtain

α(G) � φ∗(G), (1.4)
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with equality if and only if λmin(AG) = −1 or there is an optimal solution, x∗, for
(P

φ∗
G ), such that x∗T AGx∗ = 0. It must be noted that if x∗ is an optimal solution

for (P φ
∗

G ) then êT x∗
φ∗(G) = 1 and according to (1.2) and (1.4)

φ∗(G)2

x∗T (AG + I )x∗ � α(G) � φ∗(G). (1.5)

The plan of the paper is as follows. In Section 2 a complete characterisation of
the family of graphs with convex-QP stability number (where QP means quadratic
programming) is provided as well the main results connected with its recognition.
In Section 3 a necessary and sufficient condition that characterises graphs with a
perfect matching is introduced as well an algorithmic strategy for the recognition
of such graphs. In Section 4 a numerical example for the determination of a perfect
matching of a graph, G, based on the determination of a maximum stable set of
its line graph L(G), by a convex quadratic programming approach is described.
Finally, in Section 5, the recognition of a graph with a perfect matching is extended
to the determination of a maximum matching of an arbitrary graph and some related
results are presented.

2. Graphs with Convex-QP Stability Number

In Luz and Cardoso (1998), assuming that G − {v} has at least one edge, it is
proved that if φ∗2,1(G−{v}) = φ∗2,1(G) and λmin(AG−{v}) �= λmin(AG) then α(G) =
φ∗2,1(G) and, furthermore, if x̄∗ ∈ R

n−1 is an optimal solution for (P φ
∗

G−{v}), then x∗
such that

x∗i =
{
x̄i if i �= v
0 otherwise,

is the characteristic vector of a maximum stable set of G. Now we introduce the
following generalisation.

THEOREM 1. If U ⊆ V (G) is such that φ∗(G−U) = φ∗(G) and λmin(AG−U ) �=
λmin(AG) then φ∗(G) = α(G) and, furthermore, any optimal solution of (P φ

∗
G−U )

define a characteristic vector of a maximum stable set of G.
Proof. If G− U has no edges then φ∗(G− U) = α(G− U) and, according to

the hypothesis,

φ∗(G− U) = α(G− U) � α(G) � φ∗(G)⇒ α(G) = φ∗(G).
Furthermore α(G−U) = α(G) = φ∗(G−U) implies that the optimal solution of
(P

φ∗
G−U) is the characteristic vector of the maximum stable set V (G) \ U .

Let us suppose that E(G − U) �= ∅, x̄∗ is an optimal solution for (P φ
∗

G−U) and
x∗, is such that

x∗j =
{
x̄∗j , if j ∈ V (G) \ U
0, if j ∈ U.
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Let ē be a all ones vector with p = n− |U | components. Then

φ∗(G− U) = 2ēT x̄∗ − x̄∗T ( 1

−λmin(AG−U )
AG−U + Ip)x̄∗

= 2eT x∗ − x∗T ( 1

−λmin(AG−U )
AG + In)x∗

� 2eT x∗ − x∗T ( 1

−λmin(AG)AG + In)x
∗ (2.6)

� φ∗(G).

Since φ∗(G− U) = φ∗(G), then x∗ is an optimal solution for (P φ
∗

G ) and

x∗T (
1

−λmin(AG−U)AG + In)x
∗ = x∗T ( 1

−λmin(AG)AG + In)x
∗.

Thus λmin(AG) < λmin(AG−U) implies x∗T AGx∗ = 0, that is, x∗ is the character-
istic vector of a maximum stable set of G, and then α(G) = φ∗(G). �

Throughout this paper υ(G) stands for the optimal value of the convex quadratic
programming problem

(PG) υ(G) = max{2êT x − xT (HG + In)x : x � 0},
where

HG =
{ 1

�−λmin(AG)�AG if λmin(AG) �= 0
0 otherwise,

with �−λmin(AG)� denoting the least integer not less than the symmetric value of
the minimum eigenvalue of AG.

It must be noted that υ(G) remains an upper bound for α(G), which it is not
less than φ∗(G), that is,

α(G) � φ∗(G) � υ(G).

On the other hand, since the right hand side of the inequality (1.1) is always an
integer, the lower bound of the necessary and sufficient condition for α(G) =
φ∗(G) and then for α(G) = υ(G)! can be improved. So we can say that α(G) =
φ∗(G) = υ(G) if and only if for a maximum stable set, S, of G (and then for all),

�−λmin(AG)� � min{|NG(i) ∩ S| : i �∈ S}. (2.7)

! Note that if α(G) = φ∗(G) then (Pφ
∗

G
) has an integer 0−1 optimal solution which, according to

the Karush–Kuhn–Tucker optimality conditions, is also optimal for (PG) and then φ∗(G) = υ(G).
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The main advantage of the use of υ(G) instead of φ∗(G) is that if λmin(AG) is
not integer then the optimal solution of (PG) is unique!! and then is very easy to
conclude if the equalities α(G) = φ∗(G) = υ(G) hold or not.

A graph G such that α(G) = υ(G) is here in called a graph with convex-QP
stability number and throughout this paper this class of graphs will be denoted by
Q.

According to the Karush–Kuhn–Tucker optimality conditions, x∗ � 0 is an
optimal solution for the convex quadratic programming problem (PG) if and only
if it is a solution of the linear complementarity problem

AGx = �−λmin(AG)�(ê − x)+ y∗,
with y∗ � 0 and x∗T y∗ = 0.

As an immediate consequence, if x∗ is an optimal solution for (PG) then x∗T AGx∗
= �−λmin(AG)�x∗T (ê − x∗) and thus if E(G) �= ∅ then

υ(G) = 2êT x∗ − x∗T ( 1

�−λmin(AG)�AG + In)x
∗ = êT x∗ � 1.

Therefore, since any subset of nodes with characteristic vector x is a stable set iff
xT AGx = 0, we conclude that α(G) = υ(G) if and only if there is an optimal
solution for (PG), x∗, such that x∗ ∈ {0, 1}n. The same conclusion may be
obtained adapting the inequalities (1.5), assuming that x∗ is an optimal solution
for (PG) and replacing φ∗(G) by υ(G). As a direct consequence of the next the-
orem, it is also easy to conclude that if x∗ is an optimal solution for (PG) then
∀i ∈ V (G) 0 � x∗i � 1.

THEOREM 2. Let aiG be the i-th row of the matrix AG. Then the n-tuple of real
numbers x∗ is an optimal solution for (PG) if and only if ∀i ∈ V (G) x∗i =
max{0, 1− r∗i }, where r∗i = aiGx

∗
�−λmin(AG)� .

Proof. Let x∗ be an optimal solution for (PG), and let ē, x̄∗ and x̄ the subvectors
of ê, x∗ and x, respectively, without the i-th component. Let

fG−{i}(x̄) = 2ēT x̄ − x̄T ( 1

�−λmin(AG)�AG−{i} + In−1)x̄.

First, it must be observed that

υ(G) = max{fG−{i}(x̄)+ 2xi − x2
i − 2xi

aiGx

�−λmin(AG)� : x̄, xi � 0}
= fG−{i}(x̄∗)+ 2x∗i − x∗2

i − 2x∗i r
∗
i

= fG−{i}(x̄∗)+ ψ(x∗i )
= fG−{i}(x̄∗)+max{ψ(xi) : xi � 0},

!! It must be noted that if −λmin(AG)<�−λmin(AG)� then the objective function of (PG) is
strictly convex.
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where ψ(xi) = 2xi − x2
i − 2xir∗i .

Since d
dxi
ψ(xi) = 2(1 − r∗i ) − 2xi and d2

dx2
i

ψ(xi) = −2, we can conclude that

ψ(xi) is a strictly concave function which attains its maximum on a critical point,
i.e., on the solution of equation

d

dxi
ψ(xi) = 0 ⇔ xi = 1− r∗i .

Therefore, since ψ(x∗i ) = max{ψ(xi) : xi � 0}, we have

x∗i = max{0, 1− r∗i }.
Conversely, let us suppose that there is an n-tuple of real numbers, x∗, such that
∀i ∈ V (G) x∗i = max{0, 1− r∗i }.

Thus ∀i ∈ V (G) x∗i = 1− r∗i + yi , with

yi =
{ −(1− r∗i ) if (1− r∗i ) < 0

0 otherwise,

and then yi � 0. So ∀i ∈ V (G)
r∗i = 1− x∗i + yi ⇔ aiGx

∗ = �−λmin(AG)�(1− x∗i + yi).
Therefore, setting y∗i = �−λmin(AG)�yi ∀i ∈ V (G), we get the system of equa-
tions

aiGx
∗ = �−λmin(AG)�(1− x∗i )+ y∗i , i ∈ V (G)

AGx
∗ = �−λmin(AG)�(ê − x∗)+ y∗,

which is equivalent to the Karush–Kuhn–Tucker optimality conditions (since x∗T y∗
= 0). �

It is an obvious conclusion that if a graph, G, has no edges then, the optimal
solution of (PG) is the characteristic vector of the maximum stable set induced by
V (G), and thus α(G) = υ(G) = |V (G)|.

The class of graphs with convex-QP stability number is not hereditary (Lozin
and Cardoso, 1999). Though, according to the next theorem, this class of graphs is
closed under deletion of α–reducible sets of nodes (defining an α–reducible set of
nodes as being a subset U ⊂ V (G) such that α(G) = α(G− U)).

Before to proceed it must be noted that, by interlacing properties, if U ⊆ V (G)
then λmin(AG) � λmin(AG−U ) and therefore, by (2.6),

υ(G− U) � υ(G). (2.8)

THEOREM 3. If G ∈ Q and U ⊆ V (G) is such that α(G) = α(G − U) then
G− U ∈ Q.
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Proof. Since U is such that α(G) = α(G− U) therefore, from the inequalities

α(G− U) � υ(G− U) � υ(G),

we can conclude that α(G) = υ(G) implies α(G− U) = υ(G− U). �
As a consequence of the above theorem, ifG ∈ Q then there is a set U ⊆ V (G)

such that |U | = |V (G)| − υ(G) and ∀T ⊆ U, G − T ∈ Q. Note that if S is a
maximum stable set of G then

∀T ⊆ V (G) \ S, α(G) = α(G− T ) � υ(G− T ) � υ(G),

and therefore α(G) = υ(G)⇒ α(G− T ) = υ(G− T ) = υ(G).

The following results provide an algorithmic strategy for the recognition of
graphs with quadratic stability number.

THEOREM 4. If there exists v ∈ V (G) such that

υ(G) �= max{υ(G− {v}), υ(G−NG(v))}
then G /∈ Q.

Proof. Since by (2.8) υ(G) � υ(G − U) ∀U ⊆ V (G), the hypothesis of
theorem implies that υ(G) > max{υ(G− {v}), υ(G−NG(v))}.

Let S be a maximum stable set of G. If v /∈ S then

α(G) = α(G− {v}) � υ(G− {v}) < υ(G).
If v ∈ S then α(G) = α(G−NG(v)) � υ(G−NG(v)) < υ(G). �

As immediate consequence of the above theorem, if G ∈ Q then

∀v ∈ V (G), υ(G) = max{υ(G− {v}), υ(G−NG(v))}.
THEOREM 5. Consider that υ(G) = max{υ(G− {v}), υ(G−NG(v))} and that
υ(G− {v}) �= υ(G−NG(v)).
1. If υ(G) = υ(G− {v}) then G ∈ Q ⇔ G− {v} ∈ Q.
2. If υ(G) = υ(G−NG(v)) then G ∈ Q ⇔ G−NG(v) ∈ Q.

Proof.
1. Let us suppose that G ∈ Q. Since α(G) = υ(G) > υ(G − NG(v)) � α(G−
NG(v)), we can conclude that α(G) > α(G−NG(v)). Thus, if S is a maximum
stable set for G, then NG(v) ∩ S �= ∅ and therefore v /∈ S. So

α(G− {v}) = α(G) = υ(G) = υ(G− {v})⇒ G− {v} ∈ Q.

Conversely, supposing that G− {v} ∈ Q, according to the inequalities

α(G− {v}) � α(G) � υ(G) = υ(G− {v}),
we can conclude that α(G) = υ(G).
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2. Let us suppose that G ∈ Q. Then, according to the hypothesis,

α(G) = υ(G) > υ(G− {v}) � α(G− {v}),
and then α(G − {v}) < α(G). Therefore, if S is a maximum stable set then
v ∈ S, NG(v) ∩ S = ∅ and α(G−NG(v)) = α(G).
Thus α(G) = α(G − NG(v)) � υ(G − NG(v)) � υ(G) and the assumption
that G ∈ Q implies α(G−NG(v)) = υ(G−NG(v)).
Conversely, supposing G−NG(v) ∈ Q, according to the hypothesis we know
that α(G−NG(v)) � α(G) � υ(G) = υ(G−NG(v)) and then α(G) = υ(G).�

None of the theorems 4 and 5 can be applied when all of the following equalities
hold

∀v ∈ V (G) υ(G) = υ(G− {v}) = υ(G−NG(v)).
However the next theorem provides a branching strategy for such graphs (or sub-
graphs).

THEOREM 6. If there exists v ∈ V (G) such that υ(G) = υ(G − {v}) = υ(G −
NG(v)) then

G ∈ Q if and only if



G−NG(v) ∈ Q

or

G− {v} ∈ Q
Proof. Let us suppose that G ∈ Q and S is a maximum stable set of G. If v ∈ S

then α(G) = α(G − NG(v)) � υ(G − NG(v)) = υ(G) ⇒ α(G − NG(v)) =
υ(G − NG(v)). If v /∈ S then α(G) = α(G − {v}) � υ(G − {v}) = υ(G) ⇒
α(G− {v}) = υ(G− {v}).

Conversely let us suppose that G − U ∈ Q, with U = {v} or U = NG(v).
Then, since α(G − U) � α(G) � υ(G) = υ(G − U), we can conclude that
α(G) = υ(G). �

There are a large variety of graphs with convex-QP stability number. For in-
stance, as will be proved in Section 5, if G is a connected graph with an even
number of edges, then L(L(G)) ∈ Q, where L(G) denotes the line graph of G.

The line graph of a graph G it is constructed by taking the edges of G as nodes
of L(G), and joining two nodes in L(G) whenever the corresponding edges in G
have a common node.

3. Characterisation of Graphs with a Perfect Matching

Given the graph G, a matching in G is a subset of edges, M ⊆ E(G), no two of
which have a common node. A matching with maximum cardinality is designated
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maximum matching. On the other hand if for each node v ∈ V (G) there is one edge
of the matching M incident with v, then M is called a perfect matching.

The problem of determining a maximum matching or whether there exists a
perfect matching is very common in a large variety of applications and as been
extensively studied in graph theory. There are several very readable texts about
matching theory, among which we can refer, for instance, the classical monograph
of Lovász and Plummer (Lovász and Plummer, 1986) or the survey of Pulleyblank
(Pulleyblank, 1995). The determination of a maximum stable set of a line graph
L(G) is equivalent to the determination of a maximum matching of G. There-
fore, since α(L(G)) � υ(L(G)), the optimal solution of (PL(G)) is an upper
bound on the number of elements of a maximum matching of G. Based on the
Edmonds perfect matching algorithm, introduced in his landmark paper (Edmonds,
1965), polynomial-time algorithms have been developed for the determination of a
maximum matching of a graph G.

A basic property of line graphs is that they are claw-free (that is, they are
graphs which contains no induced subgraph isomorph to K1,3). In Minty (1980)
and Sbihi (1980) polynomial-time algorithms for the determination of maximum
stable sets of claw-free graphs were introduced. However, none of them utilize a
convex quadratic programming approach.

Let us denote by BG = (bve)n×m (where n = |V (G)| and m = |E(G)|) the
node edge incident matrix of a graph G, that is, such that

bve =
{

1 if the node v is incident with the edge e
0 otherwise.

Then BTGBG = AL(G) + 2Im is a positive semidefinite matrix and

∀u ∈ R
m \ {0}, uT BTGBGu = uTAL(G)u+ 2||u||2 � 0 ⇒ uT AL(G)u

||u||2 � −2.

So, the minimum eigenvalue of AL(G) is not less than −2 and if the Kernel of BG,
Ker(BG) = {u ∈ R

n : BGu = 0}, is nontrivial and u ∈ Ker(BG) \ {0}, then
AL(G)u = BTGBGu − 2u = −2u. As a consequence, −2 is an eigenvalue of AL(G)
and then λmin(AL(G)) = −2.

For a connected graph, G, λmin(AL(G)) = −2 if and only if G has an even
cycle or two odd cycles (Doob, 1973). On the other hand, given a connected graph
G with n nodes and m edges, such that λmin(AL(G)) = −2, then the multiplicity of
this eigenvalue is m− n+ 1 if G is bipartite, and m− n otherwise (Doob, 1973).

Now, before to introduce the main result of this section, let us remind that a
graph has a perfect matching if and only if each of its components has a per-
fect matching. Hence, in order to get a characterisation of graphs with perfect
matchings it suffices to consider the case that G is connected.

THEOREM 7. A connected graph G of order n > 1, such that L(G) is not
complete, has a perfect matching if and only if L(G) ∈ Q.
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Proof. Since L(G) is a line graph which is connected (since G is connected)
and not complete, then

−2 � λmin(AL(G)) < −1 ⇔ 1 < −λmin(AL(G)) � 2.

Let us suppose that S(G) is a perfect matching of G for which S(L(G)) is the
corresponding independent set of nodes of L(G). Let e ∈ E(G)\S(G) be the edge
which corresponds in L(G) to the node ve. Since S(G) is a perfect matching ofG,
if e = {i, j} then there are two edges ei, ej ∈ S(G) such that the node i is incident
with the edge ei and the node j is incident with the edge ej . Thus, by construction,
the node ve is adjacent to the nodes vei , vej ∈ S(L(G)) and we can conclude that

∀ve /∈ S(L(G)) |NL(G)(ve) ∩ S(L(G))| � 2.

Furthermore, since L(G) is a claw-free graph we can conclude that |NL(G)(ve) ∩
S(L(G))| = 2. Therefore

�−λmin(AL(G))� = 2 � min{|NL(G)(ve) ∩ S(L(G))| : ve /∈ S(L(G))}
and, according to (2.7), α(L(G)) = υ(L(G)).

Conversely let us suppose that there is no perfect matching for G and that S(G)
is a maximum matching. Then there is a node k ∈ V (G) such that k is not incident
with any edge of S(G). On the other hand, since G has no isolated nodes, the
node k is incident with an edge ẽ = {k, j} ∈ E(G), and there is an edge ë ∈
S(G), such that j is incident with ë (otherwise S(G) would be not a maximum
matching). Thus, the node of L(G) which corresponds to ẽ, vẽ, does not belong
to the maximum stable set S(L(G)), and, by construction of L(G), vë is the only
node of S(L(G)) adjacent to vẽ. Therefore,

min{|NL(G)(ve) ∩ S(L(G))| : ve /∈ S(L(G))} = 1 < 2 = �−λmin(L(G))�
and, once again, by (2.7), α(L(G)) �= υ(L(G)). �

It must be noted that if |E(G)| > 1 then only the triangles and the stars are
graphsG for which L(G) is a complete graph. For these graphs, however, it is very
easy to find a maximum matching.

The next theorem provides an easy way to find optimal solutions for (PL(G)),
when G has a perfect matching.

THEOREM 8. If G is connected and L(G) ∈ Q then the optimal solutions of
(PL(G)) are critical points for its objective function,

fL(G)(x) = 2êT x − xT (HL(G) + Im)x.
Proof. If |E(G)| = 1 the proof is trivial. Let us suppose that |E(G)| > 1 and

let S be a maximum stable set for L(G). Since L(G) ∈ Q, then by (2.7) ∀v /∈
S |NL(G)(v)∩ S| = 2 and, the characteristic vector of S, x∗, is an optimal solution
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for (PL(G)). Therefore, by the Karush–Kuhn–Tucker optimality conditions, ∃y∗ �
0 such that

AL(G)x
∗ = 2(ê − x∗)+ y∗ ∧ x∗T y∗ = 0,

where ê denotes a all ones vector of R
m,withm = |E(G)| = |V (L(G))|. Denoting

by aiL(G) the i-th row of AL(G), we have the following equalities:

∀i ∈ S aiL(G)x∗ =
∑

j∈NL(G)(i)
x∗j = 0 = 2(1− x∗i )+ y∗i ⇒ y∗i = 0,

∀i /∈ S aiL(G)x∗ =
∑

j∈NL(G)(i)
x∗j = 2 = 2(1− x∗i )+ y∗i ⇒ y∗i = 0.

Then y∗ = 0 and

AL(G)x
∗ = �−λmin(AL(G))�(ê − x∗)⇔ ∇fL(G)(x∗) = 0,

where ∇fL(G)(x) denotes the gradient of the objective function of (PL(G)). �
If for a connected graphG of order n > 1, such that L(G) is not complete, there

is a critical point, x∗ ∈ {0, 1}n, of the objective function of (PL(G)), fL(G)(x) =
2êT x−xT (HL(G)+Im)x, then it is obvious that L(G) ∈ Q. Therefore, to recognise
ifL(G) ∈ Q is equivalent to recognise if the systemAL(G)x = �−λmin(AL(G))�(ê−
x) has a 0 − 1 solution. However, as it is well known, in general, the problem o
finding a 0− 1 solution among the ones of a system of linear equations is an hard
problem.

Since, if a connected graph,G, has a perfect matching then υ(L(G)) = |V (G)|
2 ∈

ZZ, where ZZ is the set of integers, let G be the set of connected graphs G of order
n > 1, such that υ(L(G)) = n

2 ∈ ZZ (and then they are neither triangles, K3, nor
stars,K1,p, with which υ(L(K3)) = υ(L(K1,p)) = 1). Thus we have the following
algorithmic strategy for the recognition of graphs G ∈ G such that L(G) ∈ Q.

0. Algorithm (to recognise graphsG ∈ G such that L(G) ∈ Q)

1. SetW = V (L(G));
2. Let x∗L(G) be an optimal solution for (PL(G)).

2.1 If x∗ ∈ {0, 1}|V (L(G))| then STOP (L(G) ∈ Q);

3. If λmin(AL(G)) /∈ ZZ then STOP (L(G) /∈ Q);

4. Choose w ∈ W and setW = W \ {w};
5. If υ(L(G)) /∈ {υ(L(G)− {w}), υ(L(G)−NL(G)(w))}

5.1 then STOP (L(G) /∈ Q);

6. If υ(L(G)) = υ(L(G)− {w}) > υ(L(G)− NL(G)(w))
6.1 then set L(G) = L(G)− {w} and goto step 1;

7. If υ(L(G)) = υ(L(G)−NL(G)(w)) > υ(L(G)− {w})
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7.1 then set L(G) = L(G)−NL(G)(w) and goto step 1;

8. If the optimal solution of (PL(G)−{w}) or (PL(G)−NL(G)(w)) is integer

8.1 then STOP (L(G) ∈ Q);
8.2 else if W �= ∅ then goto step 4;

9. Choose v ∈ V (L(G)) and
9.1 apply the algorithm to the graph L(G)− {v} and if

L(G)− {v} ∈ Q

then STOP (L(G) ∈ Q) else goto 9.2;
9.2 apply the algorithm to the graph L(G)−NL(G)(v) and if

L(G)−NL(G)(v) ∈ Q

then STOP (L(G) ∈ Q) else STOP (L(G) /∈ Q);

End.

The main steps of the algorithm are consequence of the following results.
The step 2 is obvious. The step 3 follows from the fact that when λmin(AL(G)) /∈

ZZ, then (PL(G)) has an optimal solution, x∗, which is unique, and hence L(G) ∈ Q
if and only if x∗ ∈ {0, 1}|V (L(G))|. The step 5 follows from Theorem 4. The steps
6 and 7 are direct consequence of Theorem 5 and so, once obtained a subgraph
of L(G), L(G′), for which it is possible to get a conclusion, then L(G) ∈ Q if
and only if L(G′) ∈ Q. The step 8 follows taking into acount that if υ(L(G)) =
υ(L(G)−U) then the optimal solutions of (PL(G)−U) define optimal solutions for
(PL(G)). Finally, the step 9 follows from theorem 6 implying the recursive execution
of the algorithm.

The step 9 is reached when ∀v ∈ V (L(G))
υ(L(G)) = υ(L(G)− {v})

= υ(L(G)−NL(G)(v))
and

λmin(AL(G)) = λmin(AL(G)−{v})
= λmin(AL(G)−NL(G)(v))

and, in such case, a branching strategy it is performed in order to know ifL(G) ∈ Q
or not.

4. Numerical Example

It follows a numerical example for the recognition of a graph with a perfect match-
ing.

Let us consider the graph, G, and the corresponding graph L(G) both depicted
in Figure 1. Then λmin(AL(G)) = −2.
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Figure 1. Graphs G and L(G).

Since G is connected, in order to know if G ∈ G, we may determine a non
negative solution of the system ( 1

2AL(G) + I8)x = ê, if such solution exists (other-
wise, according to theorem 8 L(G) /∈ Q), that is, we may try to find a non negative
solution for the system




waf wac wcf wab wce wcd wbe wbd

waf 1 1
2

1
2

1
2 0 0 0 0

wac
1
2 1 1

2
1
2

1
2

1
2 0 0

wcf
1
2

1
2 1 0 1

2
1
2 0 0

wab
1
2

1
2 0 1 0 0 1

2
1
2

wce 0 1
2

1
2 0 1 1

2
1
2 0

wcd 0 1
2

1
2 0 1

2 1 0 1
2

wbe 0 0 0 1
2

1
2 0 1 1

2
wbd 0 0 0 1

2 0 1
2

1
2 1







xaf
xac
xcf
xab
xce
xcd
xbe
xbd



=




1
1
1
1
1
1
1
1



.

As we get x∗L(G), with components x∗af = 1, x∗ac = x∗cf = x∗ab = 0 and x∗ce = x∗cd =
x∗be = x∗bd = 1

2 , which is an optimal solution for (PL(G)), then υ(L(G)) = 3 =
|V (G)|

2 and hence G ∈ G. Therefore the algorithm may be applied.
Since x∗L(G) /∈ {0, 1}8, by step 2 we proceed with step 3. By step 3, since

λmin(AL(G)) = −2, we proceed with step 4. Choosing, for instance, the node in
W = V (L(G)) with maximum degree in L(G), wac, the graphs L(G) − {wac}
and L(G)−NL(G)(wac), depicted in Figure 2, are obtained. Since x∗L(G)−{wac}, with
components x∗af = 1, x∗cf = x∗ab = 0 and x∗ce = x∗cd = x∗be = x∗bd = 1

2 , and
x∗L(G)−NL(G)(wac), with components x∗bd = 0 and x∗ac = x∗be = 1 are optimal solutions
for (PL(G)−{wac}) and (PL(G)−NL(G)(wac)), respectively, we have

3 = υ(L(G)) = υ(L(G)− {wac}) > υ(L(G)−NL(G)(wac)) = 2.

Then, applying steps 5 and 6, we return to steps 1, 2, 3 and 4 with the line
graph L(G)− {wac}. Choosing, from W, the node wce we get the graphs depicted
in Figure 3.

Now, since x∗L(G)−{wac,wce}, with components x∗af = x∗cd = x∗be = 1 and x∗cf =
x∗ab = x∗bd = 0, and x∗L(G)−{wac}−NL(G)−{wac }(wce), with components x∗af = x∗ce = x∗bd =
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Figure 2. Graphs L(G)− {wac} and L(G)−NL(G)(wac).

Figure 3. Graphs L(G)− {wac,wce} and L(G)− {wac} −NL(G)−{wac}(wce).

1 and x∗ab = 0, are optimal solutions for (PL(G)−{wac,wce}) and (PL(G)−{wac}−NL(G)−{wac }(wce)),
respectively, then

υ(L(G)− {wac}) = υ(L(G)− {wac,wce})
= υ(L(G)− {wac} −NL(G)−{wac}(wce)),

and hence, reaching to step 8, since the optimal solutions of (PL(G)−{wac,wce}) and
(PL(G)−{wac}−NL(G)−{wac }(wce)) are both integer solutions we conclude that L(G) ∈ Q
and the algorithm stops.

It must be noted that since the components of the optimal the solutions for
(PL(G)−{wac,wce}) and (PL(G)−{wac}−NL(G)−{wac }(wce)), are 0−1 and υ(L(G)) = υ(L(G)−
{wac,wce}) = υ(L(G) − {wac} − NL(G)−{wac}(wce)), both define characteristic
vectors of maximum stable sets of L(G) and then the sets of edges

M1 = {{a, f }, {c, d}, {b, e}} and M2 = {{a, f }, {c, e}, {b, d}}
are perfect matchings for G.
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5. Extensions and Related Results

The algorithm for recognising a graph with a perfect matching can be easily ex-
tended to the determination of maximum matchings of arbitrary graphs. In fact,
assuming that G is connected and has at least one edge, in order to determine a
maximum matching of G, M∗, we can apply the following algorithm, where it is
assumed that Wk is disjoint from V (Gk).

0. Algorithm (to find a maximum matching ofG)

1. Set k = 0 and G0 = G;

2. If L(Gk) ∈ Q then goto step 7;

3. If |V (Gk)| is odd

3.1 then setWk = {wk};
3.2 else setWk = {w1

k , w
2
k};

4. Set V (Gk+1) = V (Gk) ∪Wk ;
5. Set E(Gk+1) = E(Gk) ∪ {{v,w} : v ∈ V (Gk),w ∈ Wk};
6. Set k = k + 1 and goto step 2;

7. IfM is a perfect matching forGk then setM∗ = E(M) ∩ E(G).
End.

It must be noted that in worst case the algorithm ends when |V (G)| − 2 nodes
are added to G. In fact, assuming that G is connected and has at least one edge,
according to the above procedure, if there is k such that |V (Gk)| = 2|V (G)| − 2
then L(Gk) ∈ Q.

Since according to Las Vergnas (1975) every connected claw-free graph of even
order has a perfect matching, we may conclude that every line graph of a connected
graph with even size has a perfect matching, and therefore we have the following
corollary of Theorem 7.

COROLLARY 9. IfG is a connected graph such that |E(G)| is even thenL(L(G))
∈ Q.

Proof. Since every line graph is claw-free and G is connected of even size, then
L(G) is connected of even order. Therefore, according to Las Vergnas (1975) L(G)
has a perfect matching and then, by Theorem 7, L(L(G)) ∈ Q, since also L(L(G))
is connected. �

As an immediate consequence of the result of Las Vergnas (1975), if G is con-
nected and has an even number of edges, then E(G) can be partitioned in paths of
length 2.

An edge e ∈ E(G) is called α–critical if α(G − {e})>α(G), where G − {e}
denotes the graph obtained fromG such that V (G−{e}) = V (G) andE(G−{e}) =
E(G) \ {e}. Then, as a direct consequence of Theorem 7, we may conclude that
a connected graph G of size |E(G)| � 2 has a perfect matching if and only if
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L(G) has no α–critical edges. Another consequence of Theorem 7 is that if G is
an Hamiltonian graph of even order, then L(G) ∈ Q.

Finally, since the inequalities (1.5) are fulfilled in equality form for graphs in the
class Q using optimal integer solutions of (P φ

∗
G ) (and then also of (PG)) we may

conclude that for these graphs spurious solutions to the Motzkin-Strauss program
(1.2) (i.e., those which only deliver the stability number via the optimal objective
value but do not serve to retrieve a maximum stable set) are impossible.
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